
	

	

	

	

	

Risk Factor - High

Threat: DDoS Booter Shell Scripts
GSI ID - 1050

Overview:

Recent trends and attack data indicate that the DDoS threatscape is shifting towards the
increased utilization of booters by malicious actors in the underground hacking communities.

Traditionally, DDoS attacks have made use of workstations or routers infected with malware.
Methods of infection would typically involve spam campaigns, worms or browser-based exploits.
The malicious actor running these traditional campaigns needed multitudes of infected
machines, with moderate amounts of bandwidth, to mount successful DDoS attacks.

The increased use of dynamic web application technologies, and the rapid deployment of
insecure web applications, has created new vulnerabilities – and opportunities for hackers to
use infected web servers (instead of client machines) to conduct DDoS attacks. The result is
that DDoS attacks can be launched more readily and can cause more damage, with far fewer
zombie computers. Web servers typically have 1,000+ times the capacity of a workstation,
providing hackers a with a much higher yield of malicious traffic at higher Packet per
Second (PPS) and Bit per Second (BPS) rates with the addition of each infected machine.

Furthermore, the skill level required to take over a web server and convert it into a DDoS
zombie has been simplified. Whereas previous infection campaigns relied on social engineering,
operating system or browser exploitation, or some combination of the above, a DDoS
Booter Shell script can be deployed by almost anyone who purchases hosting, or makes use
of simple web application vulnerabilities such as RFI, LFI, SQLi and WebDAV exploits.

The concept of infection also changes when discussing server-based attacks. Whereas
traditional Windows malware ingrains itself into the operating system and often obfuscates
its presence by spreading multiple DLLs throughout the file system, DDoS Booter Scripts are
simple standalone files that execute GET/POST floods when accessed via HTTP.

The technical requirements, design and deployment of today’s DDoS attack tools have been
simplified. At the same time, this simplification has come with increased attack power, by
utilizing server bandwidth instead of workstation bandwidth. This puts DDoS capabilities in
the hands of a much wider range of actors.

Definitions:

Booters - Slang used by malicious actors that can refer to both Booter Shells and
Booter Shell Loaders.

Booter Shell – A booter shell script is a PHP/ASP/Perl script that has the sole
functionality of sending floods of traffic for use in DDoS attacks. A malicious actor

	
 	
 2

places the script on the web server either through the compromise of a vulnerable
host, or through the purchase of legitimate hosting. Booter scripts can be static or
dynamic. Static booter scripts have the target hard coded into the file, whereas
dynamic booter scripts take input from an external command source.

Booter Shell Loader – A shell loader is a command and control (C&C) interface that
takes a text list of shell booter URLs and sends commands to the list of scripts to
start/stop DDoS attacks. Shell loaders can take the form of a web application or
client-side executable.

Public Booter Shell Lists - Public booter shell lists are made up of DDoS booter
script URLs, which are circulated on Pastebin, IRC, or other public outlets. Public lists
often have limited effectiveness as they are being used by people all over the world
all the time, and typically have a high percentage of dead links.

Private Lists - Private lists are made up of DDoS booter shell URLs that are
circulated or sold among malicious actors within the underground. Hackers compile
lists of URLs from legitimate host purchases or successful exploitations and distribute
them among their comrades. Private lists typically are more potent as they are not
widely circulated and have a low percentage of dead links. Eventually, private lists
can be leaked and become public lists.

Classes of Booter Scripts:

Static Attack Scripts - These booter scripts have the target hardcoded into the file.
They are uploaded to the host server and executed.

Dynamic Attack Scripts - These booter files integrate with Shell Booter command
and control servers that are either based on IRC, HTTP, or an executable application.

Public Tools:

Prolexic customers should open a ticket with the PLXsert for a complete archive of
discovered booter script source codes.

[PHP] These specific booters are written in PHP

Greenshell.php - UDP Flood Booter Script - http://pastebin.com/2FYcVCRi

Language: PHP
Control Direction: PUSH - HTTP GET
DDOS Attack Types: UDP Flood

In order for an attack to begin, parameters are passed to the PHP booter via a GET request.
The GET request indicates the target to attack, as well as the time duration of the attack.
The GET request can be sent via a form on the booter shell file itself, a scripting language,
or with CURL
(i.e. curl http://locationofevilbooter.com/?host=www.bankworldcorp.com&time=30).

	
 	
 3

Source: http://img812.imageshack.us/img812/3481/shella.png

The above screenshot was captured from a popular hacking forum. The GreenShell.php
contains a remote link to logo.png at http://authkeys.com/sh3ll/logo.php. The image link is
no longer operational, and it is presumed that authkeys.com was controlled by the coder or
a vendor of the GreenShell.php script.

Every time the GreenShell.php script is accessed, the call to a remote logo.php divulges
information about the user accessing the page, such as an IP address, user agent and the
location of the GreenShell booter script. This allows the original author or distributor of
GreenShell.php to collect a list of infected hosts for their own use, and collect information
on users visiting the shell.

Greenshell.php (logo removed) attacking bankworldcorp.com for a total of 30 seconds.

	
 	
 4

Attack Signature:

The attack contains a UDP session with a payload of 8,192 consecutive capital X’s (x/58). These
packets are fragmented when traversing the Internet.

0000 00 50 56 e9 7d 36 00 0c 29 c2 97 3c 08 00 45 00 .PV.}6..)..<..E.

0010 03 34 1d 65 03 9d 40 11 a7 03 c0 a8 87 a5 48 34 .4.e..@.......H4

0020 1f 32 58 58 58 58 58 58 58 58 58 58 58 58 58 58 .2XXXXXXXXXXXXXX

0030 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX

0040 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX

0050 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX

[truncated]

0320 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX

0330 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX

0340 58 58 XX

	
 	
 5

The ‘max_time’ variable that is computed on line 32 of the PHP code is simply the ‘time’ URI
option added to ‘epoch time.’ This creates the ‘max_time’ variable that is enforced on line 41 of
the PHP code. On line 36, the payload is created in a ‘for loop’ that is 65,000 capital Xs, as
noted on line 37.

While the maximum size of a UDP datagram is 65,535, most systems are configured to allow
only 8,192 bytes of UDP data by default (http://www.pcvr.nl/tcpip/udp_user.htm). The
oversized payload is pushed out to fsockopen with a random source port, and the data is
truncated before being sent out. This anomalous behavior will make detection and mitigation an
easier task.

Nogrod-pBot - http://dev.glastopf.org/attachments/download/40/dos.txt

Language: PHP
Control Direction: PULL – IRC
DDOS Attack Types: UDP and TCP Flood

pBot for short, going by the name of the class in the PHP code, lacks the pretty images and
forms that make booter scripts exceptionally easy tools for skiddies. To quote Xepouhe from
opensc.ws “Russians don't care about GUI, only hf skiddies do.” What it does instead is receive
commands via IRC (Internet Relay Chat) from a botmaster or botherder, whose job it is to

	
 	
 6

oversee the botnet operations. These operational tasks include monitoring for takeover
attempts, monitoring for pesky researchers, and most importantly instructing the bots with who
and what to attack.

In this screenshot, we joined efnet with the nickname of botmaster and created a channel
called plx-botnet. We purposely set the title to this is fake for testing so that an admin
wouldn’t become concerned. This booter has extended capabilities beyond just DDoS but
that is what we will focus on. As you can see, the .info command was issued and a Linux
Ubuntu machine responded. If multiple bots were in the channel, you would receive a
response from all of the bots that were not busy. If this type of information was wanted
from a single bot, then you could private message the bot and communicate with it that way.

	
 	
 7

Let’s focus on the two DDoS attacks, TCP flood and UDP flood.

To instruct your bot to begin a TCP flood, the documentation instructs you to enter:
.tcpflood <target> <# of packets to send> <packet size> <port> <delay interval>

So let’s see what we get from issuing the command as they instructed.

	
 	
 8

After a DNS request, which is not shown, the booter staged a TCP connection to
prolexic.com then used a Push Ack packet to send random data to the webserver. The data
was rejected by the server and the connection was reset.

	
 	
 9

The tcpflood function is called with the target host, number of packets, size of the payload,
destination port, and delay between TCP sessions.

When run, the function:

• Prints [TcpFlood Started!] to the channel
• The packet variable is instantiated then filled with random ASCII characters 1-256
• Enters a loop based on the number of packets in the function
• Attempts to stage a TCP connection; if it can, it will write the payload to the

stream and properly tear the session down. If it cannot stage the connection, it
will write [TcpFlood]: Error: <socket error>

• Waits for value of delay seconds
• Exits the loop
• Prints [TcpFlood Finished!]: Config with all the variables

Now that our TcpFlood is finished we can start a UDP flood. The instructions are similar to
the TCP variant, but we lack the port variable: .udpflood <target> <# of packets to send>
<packet size> <delay interval>.

This was sent to the bots in the IRC channel, but what was returned from the bots was
unexpected.

	
 	
 10

A random 10-byte payload was sent in a UDP packet to prolexic.com	
 with a DNS query
between every packet. These packets have random source and destination ports. This is not
like the documentation – or what we instructed the booter to do. Time to check the code!

When udpflood is called, it only requires three variables, then passes the three variables to
the udpflood function. So, for this particular attack we sent prolexic.com 10 1400 1 to
udpflood and the booter sent prolexic.com	
 10 1400 to the udpflood function in order.

	
 	
 11

The udpflood took that as instructions to attack prolexic.com with a payload of 10 bytes for
a duration of 1,400 seconds.

The function works like this:

When run, the function:

• Prints [UdpFlood Started!] to the channel
• The packet variable is instantiated then filled with random ASCII characters 1-256
• Grabs the systems epoch time
• Creates a packet counter
• Enters a loop based on current time, subtracted by the start being less than the

duration specified earlier
• Attempts to stage a udp connection attacking the target with a random

destination port, with the payload in the packet variable. Then attempts a proper
UDP tear down

• Adds 1 to the packet counter
• Exits the loop if the duration is greater than the current time, subtracted by the

start time
• Multiplies the payload by the packet count then divides by 1,048,576 to

determine the payload megabytes sent (not total bandwidth just payload).
• Then divides the total Megabytes by duration to get mebabytes per second
• Prints [UdpFlood Finished!]: mebaytes of payload sent and megabytes of

payload per second (again not the total BPS or bytes sent).

DeLiRiUm's DoS .ASP Script - http://pastebin.com/KsEX0fh3

Language: ASP.NET C#
Control Direction: PUSH - HTTP GET
DDOS Attack Types: HTTP GET Flood

The final booter we chose to investigate is this ASP script that was dumped from Pastebin.
It averaged about 20 HTTP requests per second. This is requesting the pages in a VMware
fusion image. The server was Windows 2k8 r2 and had the same system settings as the
Ubuntu web server running the other booters with PHP and Apache. ASP.NET C# provides a

	
 	
 12

lot more attack possibilities than PHP but .NET applications have better protections by
default. While they seem to have more variations in Chinese, these ASP booters are not as
prevalent as the PHP variants.

This booter attack is pretty straightforward and performs as expected. If you browse to the
booter, the page loads a title and a blank page.

After examining the source code, we determined it only needs a few URI options in the GET
parameter to begin.

There we go! Now we are attacking prolexic.com. This booter requires a GET request with
three variables: site, port and times.

	
 	
 13

The booter staged a standard TCP connection to prolexic.com on port 80. The only odd
aspect was the invalid checksums that were zeroed out. But, after some research it was
deemed correct because the network card handles the checksumming.

Contained in the push ACK was this simple GET request. Fortunately for us, it is not RFC
compliant, and was broken on many fronts. If it was correct, the request would look like this:

GET / HTTP/1.1
Host: prolexic.com
Connection: Keep-Alive

The two things wrong here should be obvious now. First, the GET request is mis-ordered.
Second, there is no space between the colon and prolexic.com in the host header.

	
 	
 14

With attention to the data variable, you can see why the request was incorrect. It is also
time to note the variables used by the booter for the attack control.

Underground Eco-System for DDoS Booter Scripts:

Actors

○ Script Kiddie - Lowest skilled actors, oftentimes end users mainly interested
in the use of DDoS botnets to attack targets. Usually will make use of public
tools and shells or will pay for access to a private botnet.

○ Hackers - Medium skilled actors, mainly interested in compromising servers
through web application vulnerabilities to drop shell scripts onto remote file
systems. Lists of successfully exploited servers are later distributed or resold
in private within the underground. The favored exploits of these hackers are
RFI (remote file inclusion), LFI (local file inclusion), SQL injection, and
WebDAV exploits.

○ Coders - Skillsets range from low to high, utilizing coding concepts to create
various flavors of server-side DDoS booter scripts in languages such as PHP,
ASP, and Perl. In addition to the server-side booter scripts, coders write C&C
interfaces to make use of booter shell lists in PHP/MySQL, or a client-side

	
 	
 15

Visual Studio GUI. Coders usually sell their tools or make use of them in their
own DDoS campaigns.

○ DDoS Service Vendors - Skillsets range from low to high, these actors focus

on marketing DDoS-as-a-Service

Booter Shell Script DDoS Financial Ecosystem

Analysts observed a high level of shell booter chatter and malicious actor activity on
HackForums.net. This discussion forum is dedicated to hacking, generating revenue on the
internet, and related topics of interest to the underground hacking community.

The forum has been operational for several years; WHOIS records indicate the domain was
registered in 2005. Despite the high number of user registrations and high volume of traffic,
the forum is notorious for being comprised of low-skilled individuals and rippers (individuals
who sell a product or service without any intention of delivering). Furthermore, the security
practices of the forum administration seem to be lacking as the SQL database is periodically
hacked and leaked into the public realm.

HackForums.net SQL Database Leak from 3/14/2012

http://pastebin.com/HeiTLgrs - Pastebin.com release
http://uppit.com/434m2857oj7r/Hackforums.net__200k_users_.sql - Hacked SQL dump

	
 	
 16

Motivations

The motivations behind booter shell attacks are in line with traditional DDoS attacks.
Extortion, revenge and hacktivism all contribute to the selection of targets. What makes
booter shell attacks unique is the use of servers instead of infected workstations, combined
with the simplicity of exploitation.

Tutorials:

Tutorial on using UDP booter scripts through legitimate hosting
http://pastebin.com/fLKydPXH

HackForums.net member showing off his executable boot loader
http://www.youtube.com/watch?v=bDpv5pIceS0

Shell Booter-DDoS-as-a-Service

Analysts observed a malicious actor with a paid advertisement on HackForums.net providing
access to a shell booter loader as a service. The user calls his service Sexy Booter.

Advertisement on HackForums.net for Sexy Booter DDoS Service

	
 	
 17

The author makes use of a PHP/MySQL content system to manage the booter shell URLs,
attack types and targets. A paid customer has access to DDoS functionality via shell
booters, a port scanner, and an HTTP proxy script, as shown by the screenshot above.

The author accepts payment via PayPal, LibertyReserve and AlertPay. The use of video
game and cartoon characters from recent decades indicates that the author is probably a
teen or young adult.

The fact that this malicious actor utilizes PayPal indicates he is either inexperienced with the
underground and doesn’t know about PayPal’s reputation for freezing questionable funds
and working with law enforcement, or simply does not care about such matters.

The service provider will create accounts for customers that last for durations from one
week ($5), one month ($15), or for the lifetime of the service ($50).

	
 	
 18

Promotional Video for SexyBooter - www.youtube.com/watch?v=BM0mHBhLXak

Glossary:

Callback - An unsolicited notification to a location controlled by a malicious actor.
IRC - Internet Relay Chat. A simple internet multi-user chat protocol that supports rooms
for group chat or private messages for individual communication. This was how the internet
communicated before Facebook. This is not just used by hackers but also by techies, nerds,
and soccer moms alike.

Contributors – PLXsert

Appendix:

HackForums.net DDoS Booter EcoSystem Image credits:
Skidz - http://www.xmdr.org/wp-content/uploads/2011/12/kid-on-computer.jpg
Hackers - http://www.wannagotothemovies.com/wp-content/uploads/2012/02/1-
feature-pic16.jpg
Coders -
http://www.collegecoders.com/Images/Professional%20Developers%20at%20Colleg
eCoders.png
Vendors - http://i.zdnet.com/blogs/v_for_vendetta.jpg
Money - http://www.thecalculatorsite.com/images/icons/currency.jpg
Tools -
http://www.veryicon.com/icon/png/Business/Real%20Vista%20Security/malicious%
20code.png
Private lists - http://files.softicons.com/download/folder-icons/dellios-system-icons-
by-dellustrations/png/256/restricted.png
HackForums banner - http://imageshack.us/f/819/ss20110116193342.png/

	
 	
 19

About PLXsert:

PLXsert monitors malicious cyber threats globally and analyzes DDoS attacks using
proprietary techniques and equipment. Through data forensics and post-attack analysis,
PLXsert is able to build a global view of DDoS attacks, which is shared with customers and
the security community. By identifying the sources and associated attributes of individual
attacks, the PLXsert team helps organizations adopt best practices and make more
informed, proactive decisions about DDoS threats.

About Prolexic:

Prolexic is the world’s largest, most trusted Distributed Denial of Service (DDoS) mitigation
provider. Able to absorb the largest and most complex attacks ever launched, Prolexic
restores mission critical Internet facing infrastructures for global enterprises and government
agencies within minutes. Ten of the world’s largest banks and the leading companies in
e-Commerce, SaaS, payment processing, travel/hospitality, gaming and other at-risk
industries rely on Prolexic to protect their businesses. Founded in 2003 as the world’s first
“in the cloud” DDoS mitigation platform, Prolexic is headquartered in Hollywood, Florida
and has scrubbing centers located in the Americas, Europe and Asia. For more information,
visit www.prolexic.com, email sales@prolexic.com or call +1 (954) 620 6002.

v.041912

